Multipliers, Paramultipliers, and weak-strong uniqueness for the Navier-Stokes equations

نویسنده

  • Pierre Germain
چکیده

In this article, we describe spaces P such that : if u is a weak (in the sense of Leray [26]) solution of the Navier-Stokes system for some initial data u0, and if u belongs to P, then u is unique in the class of weak solutions. We say then that weak-strong uniqueness holds. It turns out that the proof of such results relies on the boundedness of a trilinear functional F : L2/αḢα × L2/βḢβ × P → R, where α, β belong to [0, 1]. In order to find optimal conditions for the boundedness of F , we are led to describing spaces of multipliers and of paramultipliers (that is, functions which map, by classical pointwise product or by paraproduct, a given Sobolev spaces in another given Sobolev space). The study of these spaces enables us to give conditions for weak-strong uniqueness which generalise all previously known results, from the famous Serrin criterion [41], to the recent conditions formulated by Lemarié [25].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 These De Doctorat De L ’ Ecole Polytechnique

Weak and strong solutions of partial differential evolution equations We present in the introduction classical properties of weak and strong solutions of partial differential equations. Chapter 2 is dedicated to the study of multipliers and paramultipliers between Sobolev spaces. If the pointwise multiplication operator by a function is bounded from a Sobolev space into another, we say that thi...

متن کامل

Weak-strong uniqueness for the isentropic compressible Navier-Stokes system

We prove weak-strong uniqueness results for the isentropic compressible Navier-Stokes system on the torus. In other words, we give conditions on a strong solution so that it is unique in a class of weak solutions. Known weak-strong uniqueness results are improved. Classical uniqueness results for this equation follow naturally.

متن کامل

Solutions of Stochastic Navier – Stokes Equations

driven by white noise Ẇ . Under minimal assumptions on regularity of the coefficients and random forces, the existence of a global weak (martingale) solution of the stochastic Navier–Stokes equation is proved. In the two-dimensional case, the existence and pathwise uniqueness of a global strong solution is shown. A Wiener chaosbased criterion for the existence and uniqueness of a strong global ...

متن کامل

Stability Estimate for Strong Solutions of the Navier-stokes System and Its Applications

We obtain a ‘stability estimate’ for strong solutions of the Navier–Stokes system, which is an Lα-version, 1 < α < ∞, of the estimate that Serrin [Se] used in obtaining uniqueness of weak solutions to the Navier-Stokes system. By applying this estimate, we obtain new results in stability and uniqueness of solutions, and non-blowup conditions for strong solutions.

متن کامل

Weak and Strong Solutions of the Navier-Stokes Initial Value Problem

This paper reviews the existence, uniqueness and regularity of weak and strong solutions of the Navier-Stokes system. For this purpose we emphasize semigroup theory and the theory of the Stokes operator. We use dimensional analysis to clarify the meaning of the results for the solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006